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ABSTRACT

In context-aware route planning, a set of agents has to plan
routes on a common infrastructure and each agent has to
plan a conflict-free route from a source to a destination with-
out invalidating plans made by other agents. The existence
of such a conflict-free set of plans can be ensured if each
agent is allowed to reserve time slots on the infrastructure
resources it intends to use.

In the multi-stage variant of the context-aware routing
problem, each agent has a sequence of destination locations
it must visit. A naive approach to solve the multi-stage
variant is to make context-aware route plans between ev-
ery two subsequent locations in the sequence, and then to
concatenate these plans together. It can easily be shown,
however, that this concatenation approach cannot guaran-
tee that a multi-stage plan (if it exists) can always be found,
and even if it is found, then it need not be optimal. There-
fore, we present a new polynomial-time algorithm for the
multi-stage routing problem that always returns the opti-
mal (shortest-time) route for a single agent, given a set of
reservations made by previous agents, thus providing a set
of Pareto-optimal route plans.

Obviously, the need for such a dedicated multi-stage rout-
ing algorithm depends on the frequency with which the con-
catenation approach fails to find a plan, or finds a rather
inefficient one. Our experiments show that, given a set of
reservations from 200 agents, the concatenation approach
fails to find a solution in more than 50% of the cases, for
random visiting sequences of six locations or more. How-
ever, if the concatenation approach does find a solution, its
plan quality is often close to that of an optimal solution.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Rout-
ing and Layout; I.2.11 [Distributed Artificial Intelli-
gence]: Multiagent Systems
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1. INTRODUCTION
In context-aware routing [6, 14], there is a set of agents

each planning a conflict-free route from a start location to
a destination location on a common infrastructure. Each
agent must take into account its context, which consists of
the plans of other agents that also want to use the infrastruc-
ture. As such, context-aware routing is an attempt to resolve
possible conflicts before the execution of the agent plans, in-
stead of constructing the plans individually, and using a co-
ordination mechanism, such as social rules (cf. [11]), in the
plan execution phase. An advantage of the context-aware
approach is the avoidance of deadlocks or (unexpected) de-
lays during the execution of the plan and, therefore, an in-
creased predictability in the plan execution phase. Examples
of application domains for context-aware routing include
route planning for Automated Guided Vehicles (AGVs) in
manufacturing, and at container terminals (e.g., in Rotter-
dam or Singapore), and taxi-route planning at airports.

Context-aware routing problems are solved in a distributed
way by allowing agents to reserve time slots on infrastruc-
ture resources. Allowing an agent to find an optimal plan
that does not invalidate the plans of other agents ensures
that the set of agent plans is Pareto optimal. One of the
first context-aware algorithms is from Kim and Tanchoco [6].
They presented a single-agent algorithm that finds the op-
timal (shortest-time) route plan, given the set of reserva-
tions from previous agents. The complexity of their algo-
rithm was reported to be O(|A|4|R|2) (where A is the set of
agents, and R is the set of infrastructure resources), which
was considered to be computationally too expensive by many
(cf. [12, 15]). Hatzack and Nebel [5] presented an algorithm
that places reservations along the shortest (-distance) path.
Their algorithm has a complexity of O(|A||R|) but it does
not guarantee the optimal solution, and its application can
lead to overuse of key resources. A recent paper from Ter
Mors et al. [14] presented an optimal algorithm that runs
in O(|A||R| log(|A||R|) + |A||R|2) time. The robustness of
context-aware routing is evaluated in [9] and [13].

In the literature, alternative approaches exist to context-
aware routing. Here, we will discuss only approaches that as-
sume a graph-based infrastructure, which means that agents
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can choose different roads to travel on, but they cannot
travel in arbitrary directions (cf. [10]). An approach that
simplifies the routing problem assigns each agent to a non-
overlapping section of the infrastructure (this is sometimes
called a tandem configuration) [8]. Within its own area, an
agent can simply follow the shortest path, because it will
never encounter another agent. The tandem configuration
approach has only a limited applicability, however.

A second approach prevents deadlocks at run-time by only
allowing an agent to enter the next infrastructure resource if
it is safe to do so. Typically, a Petri net [7] is used to model
agent entry into resources, and only transitions are allowed
that leave the Petri net in a live (i.e., non-deadlocked) state.
This approach does not require much additional reasoning
in dynamic environments, but it can also be inefficient, and
furthermore travel times are unpredictable.

In multi-stage routing, an agent must visit a fixed se-
quence of locations, instead of just a single destination loca-
tion. The multi-stage routing problem can occur in all of the
aforementioned context-aware routing domains, since agents
frequently have more than one (routing) task to perform. At
airports, for example, wintry conditions sometimes require
snow and ice to be removed from wings and fuselage. This
means that an aircraft cannot taxi directly from the gate to
the runway, because it must first make a stop at a de-icing
station, which may be located elsewhere at the airport.

In manufacturing, an AGV may have a sequence of trans-
portation orders to perform, and it must also make the oc-
casional trip to the battery charging station in between or-
ders. Even if an AGV has only a single transportation task,
it cannot simply stop moving after delivering its final cargo,
because it might get in the way of other agents. Hence,
multi-stage routing is also relevant for the idle vehicle posi-
tioning problem (cf. [2]).

As far as we know, the multi-stage routing problem hasn’t
been studied previously in the literature of multi-agent rout-
ing. The reason might be that often, the shortest path
along a sequence of resources is simply the concatenation
of shortest paths between successive resources. However,
in context-aware routing with reservations, this concatena-
tion approach might return a non-optimal route, or even no
route at all (even though a route does exist), which we will
demonstrate in section 3.

Note that a related, but more general, problem that has
been studied extensively is the Traveling Salesperson Prob-
lem (TSP), in which there is a set (i.e., unordered) of loca-
tions that must be visited with minimum total cost. How-
ever, the generality afforded by the TSP is not required in
our intended applications; for instance, in the airport de-
icing scenario, an agent need not consider route plans where
the aircraft takes off prior to de-icing.

Organization. In section 2, we start by discussing the ba-
sics of the context-aware routing problem. In section 2.1, we
explain the reservation-based approach to routing, which is
based on the definition of free time windows on resources:
time intervals in which the capacity of a resource is not used
up by previous reservations. In section 3, we will demon-
strate why the concatenation approach to multi-stage rout-
ing is neither optimal nor complete, and we present a multi-
stage routing algorithm that is both complete and optimal.
In section 4, we investigate empirically the extent to which
the sub-optimality of the concatenation approach manifests

itself, compared to our optimal multi-stage routing algo-
rithm.

2. FRAMEWORK
Context-aware routing is the problem of finding conflict-

free start-destination routes for a set of agents that must
share a common infrastructure consisting of finite capacity
resources. That is, the planned routes of the agents must
ensure that there are never more agents in a resource (e.g.,
a road segment) than its capacity allows. In this section,
we will first present a framework to model this problem,
followed by a framework that models the solution method
that is based on placing reservations on resources.

An infrastructure is an undirected graph G = (V, E),
where V is a set of vertices representing intersections, and
E ⊆ V × V is a set of edges representing lanes. We define
a set A of agents that can traverse the infrastructure. For
each agent Ai ∈ A there is a pair (si, di) of locations were si

is the agent’s start location and di its destination location.
In our route planning algorithms, we will treat both lanes
and intersections as resources that must be traversed by the
agents, in non-zero time. Hence, we define the set R of re-
sources by R = V ∪E. The function C : R → N

+ associates
with every resource r ∈ R a capacity C(r) that specifies the
maximum number of agents that can simultaneously occupy
a resource. For an intersection resource r we always have
C(r) = 1. We also define a function D : R → N

+ that gives
the minimum travel time of a resource. Note that we specify
the set of possible time points by N.

From the infrastructure graph G, we derive a resource
graph RG = (R, ER) where for each edge e = {v1, v2} ∈ E,
the resource successor relation ER contains the pairs (v1, e),
(e, v2), (v2, e), and (e, v1).

Given the resource graph RG, we consider the routing
problem as a planning problem: in order to determine a set
of conflict-free plans, agents have to specify exactly for each
time point which resource they will occupy.

Definition 2.1 (Agent Plan). Given a source, des-
tination pair (s, d) and a resource graph RG, an agent plan
is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉) of n 〈 resource,
interval 〉 pairs such that r1 = s and rn = d and ∀j ∈
{1, . . . , n − 1}:

1. interval τj meets interval τj+1,

2. |τj | ≥ D(rj),

3. (rj , rj+1) ∈ ER

The first constraint in the above definition makes use of
Allen’s interval algebra [1], and states that the exit time
of the jth resource in the plan must be equal to the entry
time into resource j + 1. The second constraint requires
that the agent’s occupation time of a resource is at least
sufficient to traverse the resource in the minimum travel
time. The third constraint states that if two resources follow
each other in the agent’s plan, then they must be adjacent
in the infrastructure.

In context-aware routing, agents need to find plans that
do not interfere with each other. Only those combinations
of agent plans that do not violate any resource capacity con-
straints should be considered.
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Definition 2.2 (Resource Load). Given a set Π of
agent plans, the resource load λ is a function λ : R×N → N

that gives the number of agents occupying a resource ri at
each time point t: λ(ri, t) = |{〈ri, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}|.

The single objective in routing that we will consider in
this paper is to minimize completion time. Hence, we define
the cost of an agent plan as the end time of the plan:

Definition 2.3 (Plan Cost). Given an agent plan π =
(〈r1, [ts1 , te1)〉, . . . , 〈rm, [tsm , tem)〉), the cost of the plan is
defined as c(π) = tem , the end time of the plan. The cost
c(Π) of all plans is defined as c(Π) = maxπ∈Π(c(π)).

2.1 Free time window graph
We will take a sequential approach to routing, where agents

iteratively compute a route plan, and place reservations on
the resources for the intended periods of occupation. Dur-
ing planning, an agent is only allowed to use resources in
time intervals that do not conflict with the set of existing
reservations. We define these allowed intervals as free time
windows:

Definition 2.4 (Free Time Window). Given a func-
tion λ for the resource load, a free time window on resource
ri is a maximal interval fi,v such that:

1. ∀t ∈ fi,v : λ(ri, t) < C(ri),

2. |fi,v| ≥ D(ri).

The above definition states that for an interval to be a free
time window, there should not only be sufficient capacity at
any moment during that interval (condition 1), but it should
also be long enough for an agent to traverse the resource
(condition 2). Note that the set of free time windows Fi

on resource ri can be represented as a vector (fi,1, . . . , fi,m)
of disjoint intervals such that for all j ∈ [1, . . . , m − 1], fi,j

precedes fi,j+1.
Within a free time window, an agent must enter a re-

source, traverse it, and exit the resource. Because of non-
zero travel times D(ri), an agent cannot enter a resource
ri right at the end of the free time window, and it can-
not exit the window at the start of it. We therefore define
for every free time window fi,v = [ts, te) an entry window
τentry(fi,v) = [ts, te−D(ri)) and an exit window τexit(fi,v) =
[ts + D(ri), te).

If an agent occupies a resource ri during a free time win-
dow fi,v, then it can only travel to a neighbouring resource
rj if there is a suitable free time window fj,w that is reach-
able from fi,v:

Definition 2.5 (Free Time Window Reachability).
Given a free time window fi,v on resource ri, and a free time
window fj,w on resource rj, free time window fj,w is reach-
able from fi,v, denoted by (fi,v, fj,w) ∈ EF , if:

1. (ri, rj) ∈ ER,

2. τexit(fi,v) ∩ τentry(fj,w) �= ∅.

The reason for condition 2 in definition 2.5 above follows
from definition 2.1 of an agent plan: the exit time out of
the jth resource in the plan must equal the entry time into
resource number j + 1 in the plan.

The set of free time windows F together with the reach-
ability relation EF form a graph structure. Ter Mors et
al. [14] presented an algorithm uses this Free Time Window
Graph FTWG = (F, EF ) to find the shortest-time route
plan for a single agent, while respecting the reservations of
previous agents. The algorithm works as follows: we main-
tain a list of partial plans, and in each iteration we remove
the cheapest partial plan from the list. This partial plan
ends in some free time window f , and we expand it to all
reachable free time windows that have not been expanded to
before. We have included a specification of this algorithm
in the appendix. The algorithm is guaranteed to return
the optimal solution, and it has a run-time complexity of
O(|EF | + |F | log(|F |)).

3. MULTI-STAGE ROUTING
In previous work on context-aware routing (e.g. [5, 6]),

agents have always had a start location and a single destina-
tion location. A straightforward generalization of this prob-
lem is to assume that an agent Ai should visit a sequence
(vi,1, vi,2, . . . , vi,m) of locations (resources). A straightfor-
ward approach to multi-stage routing is to partition the
problem into a sequence of ‘single-stage’ routing problems,
and then to concatenate the resulting plans. We will be-
gin this section with an example that shows why this ap-
proach is incomplete, i.e., it does not always find a solution
in route planning with free time windows when there exist
one. Then, we will discuss two complete algorithmic ap-
proaches to the multi-stage routing problem: (i) an optimal
algorithm that fully explores the free time window graph,
and (ii) an optimal best-first search algorithm, which is sim-
ilar to A* [4]. First, however, we give a specification of the
concatenation algorithm.

Algorithm 1 Multi-Stage Concatenation

Require: visiting sequence σ =
`
r1, . . . , rm

´
, start time ts;

free time window graph FTWG = (F, EF ).
1: π ← 〈r1, [ts, ts + D(r1))〉
2: i ← 1
3: while π �= nil ∧ i < m do
4: t ← c(π) − D(ri)
5: π(i,i+1) ← planRoute(ri, ri+1, t,FTWG)
6: if π(i,i+1) = nil then
7: π ← nil
8: else
9: π ← π �π(i,i+1)

10: i ← i + 1

11: return π

The concatenation approach to multi-stage routing is in-
complete for the following reason: if we are looking for a
route from resource ra to resource rc, then it does not hold
that the shortest route to an intermediate resource rb (i.e.,
resource rb is on all shortest routes from ra to rc) can be
expanded to the shortest route to rc

1. Instead, it may be
necessary to take a slower route to rb in order to find the
shortest route to rc. This is illustrated in the following ex-
ample.

1By contrast, in classical shortest path planning, it does
hold that the shortest path to an intermediate node can be
expanded to the shortest path to the destination node.
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ra

rb

rc

rd

D(rb) = 2

D(ra) = 2

D(rc) = 2

D(rd) = 5

(a) Resource infrastructure; rectangles represent re-
sources, edges are connections between resources.

fb,1 = [0, 4)

fb,2 = [6,∞)

fa,1 = [0,∞)

ra

rb

rc

rd

fc,1 = [5,∞)

[4, 6)

[0, 5)

fd,1 = [0,∞)

(b) Free Time Window Graph; black circles represent reserva-
tions, open circles represent free time windows, and the arrows
represent the reachability between free time windows.

Figure 1: Resource graph and free time window
graph.

Example 1. In figure 1, there are four resources ra, rb,
rc, and rd, and there are some reservations on rb and rc.
The travel times of ra, rb, and rc are 2, and the travel time
of rd is 5. Suppose that an agent wants to go from ra to rc.
In ra, there is only a single free time window, and from that
window it can reach both free time windows on rb. Obviously,
the shortest route to rb makes use of the earlier time win-
dow. However, since the free time window fb,1 = [0, 4) ends
before the start of the only free time window fc,1 = [5,∞) of
resource rc, the shortest path to rb can only be expanded to
rd. Traversing rd requires 5 time units, so rc is entered at
time 9. However, the shortest route to rc enters rb at time
6, the start of the second free time window fb,2, and then
goes directly to resource rc, which it enters at time 8.

From this example we conclude that the concatenation ap-
proach to multi-stage context-aware routing is sub-optimal:
for the visiting sequence (ra, rb, rc), the concatenation ap-
proach would return the plan

〈ra, [0, 2)〉, 〈rb, [2, 4)〉, 〈rd, [4, 9)〉, 〈rc, [9, 11)〉
which is clearly not optimal.

To demonstrate that the concatenation approach is also
incomplete, only a small modification to the example is re-
quired: if we remove resource rd altogether, then the short-
est route to rb, ending in fb,1, cannot be expanded at all,
so the concatenation approach will not find a plan for the
visiting sequence (ra, rb, rc).

3.1 Multi-stage algorithms
Although the shortest route to an intermediate resource

cannot always be expanded, it does hold that if an inter-
mediate free time window is on the shortest route to the
destination, then the shortest route to that free time win-
dow can always be expanded to the shortest route to the
destination. The problem is that we do not know which free
time window on an intermediate resource is on the shortest
route to the destination. Of course, if we want to find the
optimal multi-stage route, we can simply try them all.

We can perform an exhaustive search of the free time
window graph using the following breadth-first search al-
gorithm. From the start location, and the free time window
associated with the start time, we make a route plan to the
next stage. This route plan will reach the second stage in
some free time window f . We mark f as visited, and again
try to find a route plan from the start location to the sec-
ond stage, which will make use of a later free time window,
if any still exists. We continue until all possible plans from
the start location to the second stage have been made.

Next, for every partial plan to stage 2, we try to find a
plan to each free time window on stage 3. This results in
zero or more partial plans to each free time window on stage
3. For all free time windows on stage 3, we take the best
(shortest-time) partial plans, and use these to make partial
plans to stage 4, and we continue until we have a set of plans
to the destination location, and we return the best of these.

The second algorithm we present tries to improve on the
breadth-first search algorithm by finding the optimal solu-
tion using fewer calls to the context-aware routing algorithm
planRoute (see algorithm 3). This Multi-Stage Routing al-
gorithm (see Algorithm 2) differs from the aforementioned
breadth-first search algorithm in two respects:

1. A partial plan is only expanded with one new plan in
each iteration, instead of making plans to all reach-
able free time windows on the next stage. To guar-
antee completeness, a partial plan that has only been
partially expanded must be put back into the queue of
partial plans.

2. In each iteration, we expand the most promising par-
tial plan (in this regard, algorithm 2 is similar to A*
and algorithm 3). A plan π is the most promising iff
y(π) = g(π) + h(π) is minimal over all partial plans
in the queue, where g(π) is the cost of partial plan
π (i.e., g(π) = c(π)), and h(π) is a heuristic function
estimating the cost of completing π to the destination.

For the heuristic function h(π), we choose the cost min-
imal path — without reservations — from the current lo-
cation to the destination location. Note that this heuristic
function never overestimates the true cost of reaching the
destination (i.e., it is admissible).

In line 2, we make a copy of the free time windows as-
sociated with every stage in the visiting sequence σ. These
copies are required to keep track of the partial plans that
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Algorithm 2 Multi-Stage Routing

Require: visiting sequence σ =
`
r1, . . . , rm

´
, start time ts;

free time window graph FTWG = (F, EF ).
Ensure: shortest-time plan π from 〈r1, ts〉 to rm s.t. σ is a

sub-sequence of resources(π).
1: for all ri ∈ σ do
2: F i

copy ← Fri

3: rs ← σ(1)
4: if ∃v [fs,v ∈ Fs | ts ∈ τentry(fs,v)] then
5: Q ← {〈fs,v, rs, ts〉}
6: while Q �= ∅ do
7: π = (〈f, ri, t〉, T ) ← argminπx∈Q y(πx)

8: if ri = rm then
9: return π

10: πi+1 ← planRoute(ri, ri+1, t, (F ⊕ F i+1
copy, EF ))

11: π′ = (〈f ′, ri+1, t′〉, T ′) ← π �πi+1

12: if π′ �= nil then
13: if ∃π′′ = (〈f ′, ri+1, 〉, ) ∈ Q then
14: Q ← Q \ {π′′}
15: entryTime(F i+1

copy, f ′) ← t′

16: f ′′ ← nextFreeTimeWindow(f ′)
17: y(π) ← g(ri+1, start(f ′′)) + h(ri+1)
18: Q ← Q ∪ {π, π′}
19: return nil

have been created for each stage. Note that if σ contains
duplicate resources, then we also create duplicate copies of
the free time windows.

In line 4, we find the free time window on the start re-
source such that the entry window contains the start time
ts. Line 5 adds the first element to the open list Q. An ele-
ment of the open list is a partial plan to a certain stage ri.
We represent a partial plan as a tail end of the plan T , and
the ‘head’ of the plan consisting of a tuple 〈f, t, ri〉, where

• f is a free time window;

• t is the time at which the resource is entered (such that
t ∈ τentry(f));

• ri is the resource of stage i.

In line 7, we remove the minimum-value element from Q.
In this case, the elements in Q are ordered in increasing value
of g(r, t)+h(r).2 If the minimum-value element has reached
the destination stage, then we can return this plan. If the
final stage has not been reached, then the minimum-value
element will be expanded to the next stage. Expansion of
element π in line 10 amounts to finding the shortest context-
aware plan from the current stage (resource ri) to the next
stage, denoted as ri+1 (the index i refers to the position in
the vector σ). The final argument, (F ⊕F i+1

copy, EF ), requires
some explanation.

In the set F i+1
copy we mark the entry times of partial plans

into the stage ri+1. Given a free time window f , the effect
of a marking with time stamp t is that the (single-stage)
route planning algorithm will not make use of this free time
window, unless it can reach f at a time earlier than t (see

2In general, the functions g and h are defined on plans; here
g(r, t) is shorthand for the cost of the plan that enters the
resource r at time t, whereas h(r) is the estimated cost of
completing a plan that ends in resource r.

line 10 of algorithm 3). The expression F ′ = F ⊕ F i+1
copy

indicates that a set F ′ of free time windows is created in
which the markings of F i+1

copy are added to the corresponding
free time windows in F (note that the set F contains no
other markings). The markings should ensure that a plan is
found that:

1. makes use of a ‘non-discovered’ free time window on
ri+1, or

2. makes use of a previously-visited free time window, but
arrives at an earlier time within this free time window.

Note that when making a plan from stage ri to stage ri+1,
the single-stage routing algorithm only takes into account
the markings of stage ri+1, not of any other stage rj , even
if stages i + 1 and j correspond to the same resource.

Having found a plan πi+1 from stage ri to ri+1, we con-
catenate πi+1 with the plan π from rs to ri. In line 15, we
mark the free time window f ′ (reached by the new plan π′)
by the entry time t′.

Finally, we have to insert the plan π back into the open list
Q, because we have not fully expanded this plan yet. How-
ever, before we put the plan back, we update its ‘y-value’ to
avoid expanding the same plan in the next iteration. The
next time we expand π, we will find a plan that is more ex-
pensive than π′, because no expansion of plan π can make
use of free time window f ′ anymore. In line 17, we deter-
mine the new y-value based on the start time of the next
free time window f ′′ on ri+1. In line 18, we add both the
new plan π′ and the updated plan π to the open list.

3.1.1 Correctness of algorithm 2
We must prove that if a solution to the multi-stage routing

problem exists, then algorithm 2 finds the optimal solution.

Proposition 1. Algorithm 2 returns the optimal solu-
tion.

Proof. Algorithm 2 is optimal for the same reason that a
standard A* algorithm is: in each iteration the most promis-
ing plan is expanded, and it is not possible that expansion of
a plan π results in a plan π′ such that y(π′) < y(π). What
remains to be proven is the correctness of:

1. removal of partial plans from the queue in line 14,

2. putting partial plans back into the queue in lines 17
and 18.

Ad 1: In line 13, we check whether a plan exists in Q that
has the same combination of stage and free time window as
the plan that was found by algorithm 3 in line 10. If such
a plan π′′ exists, then it must be that c(π′′) > c(π′): the
contrary would imply that the entry time of π′′ into ri+1

(and therefore into f ′) were smaller than the entry time of
π′ into ri+1. But algorithm 3 can only find the plan π′ that
makes use of f ′ if the entry time of π′ into f ′ is smaller than
any previously recorded entry time (line 10 of algorithm 3).
Hence, the entry time of π′′ into f ′ must be larger, and
we can safely discard π′′, since the set of plans that can
be expanded from π′′ is a subset of the plans that can be
expanded from π′.

Ad 2: In line 18, we place an expanded plan π back
into Q, to ensure completeness. However, we first update
the value of y(π) to reflect that the next time π will be
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expanded, it will result in a more expensive plan. To guar-
antee optimality, it must hold that the new value of y(π)
does not overestimate the cost of completing π to the final
stage. There are two reasons why this holds: (i) the next
time π will be expanded, it cannot find a plan into a time
window earlier than f ′, or earlier in f ′ than t′, because π′

is the optimal plan from π to the next stage ri+1; (ii) the
next best plan cannot reach the next stage earlier than the
start of the next free time window f ′′.

We conclude that algorithm 3 is correct, and because of
the ‘A* property’, it is optimal.

3.1.2 Algorithm complexity
The computational complexity of algorithm 2 is deter-

mined by the number of calls that are made to algorithm 3.

Proposition 2. Algorithm 2 has a run-time complexity
of O(|F |2 · (|EF | + |F | log(|F |))).

Proof. The main while loop that spans lines 6 to 18
is executed at most O(|F |) times. Each free time window
from every stage (except the last one) can be expanded, in
the worst case, to every free time window on the next stage,
which results in O(|F |) calls to algorithm 3, the single-stage
routing algorithm.

Hence, there are O(|F |2) calls to algorithm 3, which has
a complexity of O(|EF | + |F | log(|F |)).

4. EXPERIMENTS
In section 3, we showed that there exist instances where

the plan-concatenation approach to multi-stage routing fails
to find an optimal solution, or even any solution at all. In
this section, we will investigate empirically (i) how often the
concatenation approach fails to find a plan, (ii) how often
it finds a sub-optimal plan, and (iii) if concatenation finds
a sub-optimal plan, how much more expensive it is than
an optimal plan. We will also investigate the CPU time
required by the optimal algorithm (algorithm 2), and how
the CPU time depends on the length of the visiting sequence.

4.1 Test procedure
We tested the two algorithms on two different infrastruc-

tures. The first infrastructure is a random graph with 280
resources. For each agent a randomly generated visiting se-
quence σ was determined. The visiting sequence size |σ| was
set to 4, 6 and 8.

To investigate how multi-stage routing performs in a real-
life application, we looked at the de-icing problem at an
airport (see introduction). Our infrastructure is a model
of Amsterdam Airport Schiphol, which consists of 1219 re-
sources. For each aircraft (agent), the visiting sequence con-
sisted of (i) one of six available runways, (ii) one of 209
gates, (iii) one of two de-icing stations, located at the cen-
ter of the airport, and one of five remaining runways (i.e.,
different from the arrival runway).

We used a total of 900 agents to perform the experiments.
The first agent to make a plan has no reservations to take
into account, whereas agent 900 has to respect the reserva-
tions of the previous 899 agents (we chose a random order in
which to let the agents plan). For each agent, we ran both
the Multi-Stage Concatenation (MSC — algorithm 1) and
the Multi-Stage Routing (MSR — algorithm 2) algorithm,
and we reserved the plan made by MSR. All of the follow-
ing experiments have been repeated 100 times with different
(randomly chosen) visiting sequences.

4.2 Results
Figure 2 shows the percentage of plans produced by MSC

that are optimal (line with circles), sub-optimal (triangles),
and the percentage of null plans (i.e., the percentage of runs
that MSC finds no plan — line with squares). Note that
to obtain the percentage of runs in which MSR outperforms
MSC, we need to add the percentage of sub-optimal plans
to the percentage of null plans.

The first conclusion we can draw from figure 2 is that the
percentage of null plans not only increases with the number
of reservations in the system, but also with the length of
the visiting sequence. Although it is true that 200 agents
produce more reservations when they have a plan along 8
locations rather than 4, we also see that 80% or more null
plans is never reached when |σ| ≤ 6, even for 900 agents,
whereas it is already reached for around 200 agents when
|σ| = 8. Also, for all sizes of visiting sequence we see that
the percentage of null plans increases quickly at first, but
then it starts to level out. The exception is the Schiphol
infrastructure, where the levelling of the percentage of null
plans was not (yet?) observed for 900 agents. The behaviour
of the null-plan lines in figure 2 leads us to believe that
there is a small probability of failure at each intermediate
resource, and that this probability increases with the number
of reservations in the system, up to a point where no more
reservations can be made for a certain time period.

For all sizes of visiting sequence, and for both Schiphol
and the random graph, we see that the percentage of sub-
optimal plans stays relatively constant. For |σ| ≥ 6, the
percentage is higher when the percentage of null plans is
still small. The actual differences in plan cost are small,
however, as shown in table 1. The differences are small in-
deed for the Schiphol network, and we suspect there are two
reasons for this. First of all, the distances between stages
on the Schiphol network are larger, so the loss of quality is
divided by a greater total plan cost. Second, and perhaps
more importantly, the final stage in any plan (a departure
runway) is shared by many agents, and will therefore be-
come a bottleneck resource. Hence, any time lost after the
penultimate stage (the de-icing station) can be made up be-
cause the agent has to wait for entry into the runway. A
final conclusion is that the concatenation approach suffers
more from incompleteness than from sub-optimality.

Table 1: Plan cost of sub-optimal MSC plans.
network type |σ| plan cost compared to optimum
random graph 4 102.73%
random graph 6 102.21%
random graph 8 102.09%
Schiphol 4 100.15%

Figure 3 shows the average execution times of the MSR
algorithm along with 95% confidence intervals, for visiting
sequence sizes 4, 6 and 8. The confidence intervals grow
both with the number of agents, but also with the size of
the visiting sequence. This means that for larger |σ| there is
more variation in execution times. The average CPU-times
for the MSC algorithm haven’t been plotted, because the
required CPU-time is only a fraction of the time needed by
the MSR algorithm (i.e., smaller than 10 ms for |σ| = 8).
This is not surprising, as only |σ|−1 calls to the single-stage
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(b) Schiphol airport, visiting sequence size 4
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(d) random graph, visiting sequence size 8

Figure 2: Comparison of plan costs between MSC and MSR.

routing algorithm are required. In figure 3 we can see that
the relation between the CPU time and the number of agents
is more or less linear for the random graph. Hence, the
worst-case complexity of algorithm 2, which would require
O(|F |2) calls algorithm 3 (for a total complexity that is at
least cubic), is not observed.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented an optimal algorithm for the

multi-stage context-aware routing problem. The straightfor-
ward concatenation approach requires less CPU time, but it
often fails to find a plan, and more often as the size of the
visiting sequence increases. However, when the concatena-
tion approach does yield a plan, its cost is usually close to
that of an optimal solution.

For future work, we should try to find algorithms that
bridge the computational gap between the concatenation ap-

proach and our optimal algorithm. Such algorithms can be
adaptations of algorithm 2 that use different cost functions
and different (possibly non-admissible) heuristic functions
(cf. [3]). Given the high quality of the plans that are re-
turned by the concatenation approach, it may be worthwhile
to look for an algorithm that is complete but not optimal.

Taking a broader perspective, we can also investigate the
role of context-aware routing in multi-agent systems. So far,
existing research has always assumed that placing a reser-
vation on a resource is allowed as long as there is capacity
available. However, we can also imagine that the infras-
tructure resources are governed by agents, and that these
agents have preferences about which agent uses a resource,
and when. A second assumption is that once a reservation
has been made, other agents unquestioningly plan around
this reservation. A more interesting scenario might be that
agents should negotiate over resource reservations.
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APPENDIX

Single-stage routing algorithm

Algorithm 3 below is similar to the A* search algorithm [4].
There is an open list Q (typically implemented as a priority
queue) of partial plans, and in each iteration the minimum-
cost plan is removed from Q and expanded to all neighbours.
A partial plan ends in some resource ri that has been reached
at a time t, where t ∈ τentry(f) for some free time window
f . The ‘neighbours’ of a partial plan are determined by the
free time window reachability relation EF , together with the
specific entry time t. We write f ′ ∈ ρ(ri, t) if (f, f ′) ∈ EF

and ∃t′ ∈ τentry(f
′)[t + D(ri) ≤ t′].

In algorithm 3 we only expand a free time window (line 9)
that hasn’t been expanded before at an earlier time, which
we verify in line 10. It has been proved in [14] that each free
time window can be expanded only once.

Algorithm 3 planRoute

Require: start resource rs, destination resource rd, start
time ts; free time window graph FTWG = (F, ρ)

Ensure: shortest-time, reservation-respecting route plan
from 〈rs, ts〉 to rd.

1: if ∃v [fs,v ∈ Fs | ts ∈ τentry(fs,v)] then
2: Q ← {〈rs, ts〉}
3: while Q �= ∅ do
4: 〈ri, ti〉 ← argmin〈r,t〉∈Q g(r, t)
5: Q ← Q \ {〈ri, ti〉}
6: if ri = rd then
7: return 〈ri, ti〉
8: texit ← g(ri, ti)
9: for all fj,v ∈ ρ(ri, texit) do

10: if texit < entryTime(fj,v) then
11: tentry = max(texit, σj,v)
12: backpointer(rj , tentry) ← 〈ri, ti〉
13: Q ← Q ∪ {〈rj , tentry〉}
14: entryTime(fj,v) ← tentry

15: return nil
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